比利时vs摩洛哥足彩
,
university of california san diego
****************************
math 209 - number theory
roman kitsela
ucsd
a tannaka-krein reconstruction result for profinite groups
abstract:
the classical tannaka reconstruction theorem allows one to recover a compact group $g$ (up to isomorphism) from the monoidal category of finite dimensional representations of $g$ over $\mathbb{c}$, $\text{rep}_{\mathbb{c}}(g)$, as the tensor preserving automorphisms of the forgetful functor $\text{rep}_{\mathbb{c}}(g) \longrightarrow \text{vec}_{\mathbb{c}}$. now let $g$ be a profinite group, $k$ a finite extension of $\mathbb{q}_p$ and $\text{ban}_g(k)$ the category of $k$-banach space representations (of $g$). $\text{ban}_g(k)$ can be equipped with a (completed) tensor product $(-)\hat\otimes_k(-)$ and has a forgetful functor $\omega : \text{ban}_g(k) \longrightarrow \text{ban}(k)$. using an anti-equivalence of categories between $\text{ban}_g(k)$ and the category of iwasawa $g$-modules due to schneider and teitelbaum, we prove that a profinite group $g$ can be recovered from $\text{ban}_g(k)$, in particular $g \cong \text{aut}^\otimes(\omega)$.
february 7, 2019
1:00 pm
ap&m 7321
****************************