比利时vs摩洛哥足彩
,
university of california san diego
****************************
food for thought seminar
henning hohnhold
ucsd
what is a non-commutative space?
abstract:
an important aspect of quantum mechanics is that it introduces non-commutative phenomena into physics: heisenberg's uncertainty principle reflects the fact of mathematical life that matrices don't necessarily commute. over the last 80 years the study of non-commutative structures has become an increasingly popular activity in many branches of mathematics. the two examples i will talk about are non-commutative topology and non-commutative measure theory. my main goal will be to explain what people mean when they use these words and why the terminology is justified. i hope this will be interesting for geometers and analysts alike. the main ingredients in non-commutative geometry are non-commutative rings, so if you're an algebraist, maybe you'll find something to like as well. time permitting i'll describe some examples and theorems relating to the classification of non-commutative measure spaces (a.k.a. von neumann algebras).
november 9, 2006
12:00 pm
ap&m 7321
****************************