printable pdf
比利时vs摩洛哥足彩 ,
university of california san diego

****************************

algebraic geometry seminar

nikolay buskin

ucsd

every rational hodge isometry between two k3 surfaces is algebraic

abstract:

we prove that cohomology classes in $h^{2,2}(s_1\times s_2)$ of hodge isometries $$\psi \colon h^2(s_1,\mathbb q)\rightarrow h^2(s_2,\mathbb q)$$ between any two projective complex $k3$ surfaces $s_1$ and $s_2$ are polynomials in chern classes of coherent analytic sheaves. consequently, the cohomology class of $\psi$ is algebraic this proves a conjecture of shafarevich announced at icm in 1970.

organizer: james mckernan

october 14, 2016

4:30 pm

ap&m 5829

****************************